R for Public Health
Department of Community Medicine, MGIMS
24 Sep 2024
spc_tbl_ [150 × 28] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ phc : chr [1:150] "Anji" "Kharangana" "Anji" "Anji" ...
$ sex : chr [1:150] "Male" "Female" "Male" "Male" ...
$ dob : Date[1:150], format: "1999-10-01" "1999-09-16" ...
$ age : num [1:150] 23 23 30 18 29 18 12 27 25 30 ...
$ gps_lat : num [1:150] 20.8 20.7 20.8 20.8 20.6 ...
$ gps_long : num [1:150] 78.6 78.7 78.5 78.7 78.6 ...
$ edu : chr [1:150] "Graduate and above" "Higher Secondary" "Higher Secondary" "Secondary" ...
$ curSmoke : chr [1:150] "No" "No" "No" "No" ...
$ curSmokeless: chr [1:150] "No" "No" "Yes" "No" ...
$ alcEver : chr [1:150] "No" "No" "No" "No" ...
$ met_cat : chr [1:150] "No" "Yes" "No" "Yes" ...
$ TotalMetmin : num [1:150] 240 2160 240 720 1800 480 120 200 480 180 ...
$ wt : num [1:150] 62.5 48.2 68 48.4 67.8 46.6 32.9 79 53.3 47.5 ...
$ ht : num [1:150] 170 153 169 176 NA ...
$ Glucose : num [1:150] 80 75 128 88 86 71 63 158 70 80 ...
$ Cholesterol : num [1:150] 133 139 142 122 126 141 127 98 183 144 ...
$ wealth_index: chr [1:150] "Highest" "Second" "Second" "Highest" ...
$ stress : chr [1:150] "Moderate stress" "High perceived stress" "Moderate stress" "Low stress" ...
$ depression : chr [1:150] "No" "No" "Yes" "No" ...
$ anxiety : chr [1:150] "No" "No" "No" "No" ...
$ sbp : num [1:150] 120 106 116 97 109 99 110 105 101 117 ...
$ dbp : num [1:150] 78 71 67 62 68 66 68 65 82 70 ...
$ sbp1 : num [1:150] 120 106 116 97 109 99 110 105 101 117 ...
$ sbp2 : num [1:150] 127 109 112 115 106 103 109 108 108 111 ...
$ sbp3 : num [1:150] 117 93 112 115 106 105 121 115 114 101 ...
$ dbp1 : num [1:150] 78 71 67 62 68 66 68 65 82 70 ...
$ dbp2 : num [1:150] 82 84 74 78 70 70 66 70 87 73 ...
$ dbp3 : num [1:150] 85 67 75 86 64 70 81 71 80 68 ...
- attr(*, "spec")=
.. cols(
.. phc = col_character(),
.. sex = col_character(),
.. dob = col_date(format = ""),
.. age = col_double(),
.. gps_lat = col_double(),
.. gps_long = col_double(),
.. edu = col_character(),
.. curSmoke = col_character(),
.. curSmokeless = col_character(),
.. alcEver = col_character(),
.. met_cat = col_character(),
.. TotalMetmin = col_double(),
.. wt = col_double(),
.. ht = col_double(),
.. Glucose = col_double(),
.. Cholesterol = col_double(),
.. wealth_index = col_character(),
.. stress = col_character(),
.. depression = col_character(),
.. anxiety = col_character(),
.. sbp = col_double(),
.. dbp = col_double(),
.. sbp1 = col_double(),
.. sbp2 = col_double(),
.. sbp3 = col_double(),
.. dbp1 = col_double(),
.. dbp2 = col_double(),
.. dbp3 = col_double()
.. )
- attr(*, "problems")=<externalptr>
Rows: 150
Columns: 28
$ phc <chr> "Anji", "Kharangana", "Anji", "Anji", "Talegaon", "Talega…
$ sex <chr> "Male", "Female", "Male", "Male", "Male", "Female", "Fema…
$ dob <date> 1999-10-01, 1999-09-16, 1992-09-07, 2004-04-20, 1993-11-…
$ age <dbl> 23, 23, 30, 18, 29, 18, 12, 27, 25, 30, 28, 25, 13, 11, 2…
$ gps_lat <dbl> 20.78229, 20.71299, 20.83439, 20.78233, 20.61487, 20.6314…
$ gps_long <dbl> 78.62309, 78.68535, 78.50479, 78.66968, 78.64125, 78.6088…
$ edu <chr> "Graduate and above", "Higher Secondary", "Higher Seconda…
$ curSmoke <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "No…
$ curSmokeless <chr> "No", "No", "Yes", "No", "Yes", "No", "No", "No", "Yes", …
$ alcEver <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No", "No…
$ met_cat <chr> "No", "Yes", "No", "Yes", "Yes", "No", "No", "No", "No", …
$ TotalMetmin <dbl> 240, 2160, 240, 720, 1800, 480, 120, 200, 480, 180, 720, …
$ wt <dbl> 62.5, 48.2, 68.0, 48.4, 67.8, 46.6, 32.9, 79.0, 53.3, 47.…
$ ht <dbl> 170.0, 152.9, 169.4, 176.0, NA, 157.6, 152.2, 171.0, 164.…
$ Glucose <dbl> 80, 75, 128, 88, 86, 71, 63, 158, 70, 80, 110, 100, 78, 8…
$ Cholesterol <dbl> 133, 139, 142, 122, 126, 141, 127, 98, 183, 144, 135, 143…
$ wealth_index <chr> "Highest", "Second", "Second", "Highest", "Highest", "Mid…
$ stress <chr> "Moderate stress", "High perceived stress", "Moderate str…
$ depression <chr> "No", "No", "Yes", "No", "Yes", "No", "No", "No", "No", "…
$ anxiety <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Yes", "N…
$ sbp <dbl> 120, 106, 116, 97, 109, 99, 110, 105, 101, 117, 128, 106,…
$ dbp <dbl> 78, 71, 67, 62, 68, 66, 68, 65, 82, 70, 72, 80, 66, 57, 6…
$ sbp1 <dbl> 120, 106, 116, 97, 109, 99, 110, 105, 101, 117, 128, 106,…
$ sbp2 <dbl> 127, 109, 112, 115, 106, 103, 109, 108, 108, 111, 121, 11…
$ sbp3 <dbl> 117, 93, 112, 115, 106, 105, 121, 115, 114, 101, 125, 91,…
$ dbp1 <dbl> 78, 71, 67, 62, 68, 66, 68, 65, 82, 70, 72, 80, 66, 57, 6…
$ dbp2 <dbl> 82, 84, 74, 78, 70, 70, 66, 70, 87, 73, 69, 77, 72, 97, 6…
$ dbp3 <dbl> 85, 67, 75, 86, 64, 70, 81, 71, 80, 68, 69, 78, 72, 52, 6…
[1] "phc" "sex" "dob" "age" "gps_lat"
[6] "gps_long" "edu" "curSmoke" "curSmokeless" "alcEver"
[11] "met_cat" "TotalMetmin" "wt" "ht" "Glucose"
[16] "Cholesterol" "wealth_index" "stress" "depression" "anxiety"
[21] "sbp" "dbp" "sbp1" "sbp2" "sbp3"
[26] "dbp1" "dbp2" "dbp3"
# A tibble: 6 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharangana Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Male 1993-11-13 29 20.6 78.6 High… No Yes
6 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
Select
Arrange
Filter
Mutate
Summarize
# A tibble: 150 × 2
phc sex
<chr> <chr>
1 Anji Male
2 Kharangana Female
3 Anji Male
4 Anji Male
5 Talegaon Male
6 Talegaon Female
7 Kharangana Female
8 Anji Male
9 Talegaon Male
10 Waifad Female
# ℹ 140 more rows
# A tibble: 150 × 2
phc sex
<chr> <chr>
1 Anji Male
2 Kharangana Female
3 Anji Male
4 Anji Male
5 Talegaon Male
6 Talegaon Female
7 Kharangana Female
8 Anji Male
9 Talegaon Male
10 Waifad Female
# ℹ 140 more rows
# A tibble: 150 × 2
phc sex
<chr> <chr>
1 Anji Male
2 Kharangana Female
3 Anji Male
4 Anji Male
5 Talegaon Male
6 Talegaon Female
7 Kharangana Female
8 Anji Male
9 Talegaon Male
10 Waifad Female
# ℹ 140 more rows
# A tibble: 150 × 25
phc sex dob gps_lat gps_long curSmoke alcEver met_cat TotalMetmin
<chr> <chr> <date> <dbl> <dbl> <chr> <chr> <chr> <dbl>
1 Anji Male 1999-10-01 20.8 78.6 No No No 240
2 Khara… Fema… 1999-09-16 20.7 78.7 No No Yes 2160
3 Anji Male 1992-09-07 20.8 78.5 No No No 240
4 Anji Male 2004-04-20 20.8 78.7 No No Yes 720
5 Taleg… Male 1993-11-13 20.6 78.6 No No Yes 1800
6 Taleg… Fema… 2004-07-05 20.6 78.6 No No No 480
7 Khara… Fema… 2010-09-24 20.7 78.7 No No No 120
8 Anji Male 1995-01-03 20.8 78.7 No No No 200
9 Taleg… Male 1997-06-11 20.6 78.6 No No No 480
10 Waifad Fema… 1992-07-01 20.7 78.5 No No No 180
# ℹ 140 more rows
# ℹ 16 more variables: wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>,
# wealth_index <chr>, stress <chr>, depression <chr>, anxiety <chr>,
# sbp <dbl>, dbp <dbl>, sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>,
# dbp2 <dbl>, dbp3 <dbl>
# A tibble: 150 × 1
dbp3
<dbl>
1 85
2 67
3 75
4 86
5 64
6 70
7 81
8 71
9 80
10 68
# ℹ 140 more rows
# A tibble: 150 × 4
sbp sbp1 sbp2 sbp3
<dbl> <dbl> <dbl> <dbl>
1 120 120 127 117
2 106 106 109 93
3 116 116 112 112
4 97 97 115 115
5 109 109 106 106
6 99 99 103 105
7 110 110 109 121
8 105 105 108 115
9 101 101 108 114
10 117 117 111 101
# ℹ 140 more rows
# A tibble: 150 × 2
sbp3 dbp3
<dbl> <dbl>
1 117 85
2 93 67
3 112 75
4 115 86
5 106 64
6 105 70
7 121 81
8 115 71
9 114 80
10 101 68
# ℹ 140 more rows
# A tibble: 150 × 2
met_cat TotalMetmin
<chr> <dbl>
1 No 240
2 Yes 2160
3 No 240
4 Yes 720
5 Yes 1800
6 No 480
7 No 120
8 No 200
9 No 480
10 No 180
# ℹ 140 more rows
# A tibble: 150 × 3
sbp1 sbp2 sbp3
<dbl> <dbl> <dbl>
1 120 127 117
2 106 109 93
3 116 112 112
4 97 115 115
5 109 106 106
6 99 103 105
7 110 109 121
8 105 108 115
9 101 108 114
10 117 111 101
# ℹ 140 more rows
# A tibble: 150 × 2
# Groups: sex, edu [8]
sex edu
<chr> <chr>
1 Male Graduate and above
2 Female Higher Secondary
3 Male Higher Secondary
4 Male Secondary
5 Male Higher Secondary
6 Female Higher Secondary
7 Female No or primary schooling
8 Male Graduate and above
9 Male Secondary
10 Female Secondary
# ℹ 140 more rows
# A tibble: 150 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 2012-02-22 10 20.8 78.7 No o… No No
2 Anji Fema… 2012-01-28 10 20.8 78.6 No o… No No
3 Anji Male 2012-01-11 10 20.8 78.5 No o… No No
4 Kharanga… Fema… 2011-09-12 11 20.7 78.7 No o… No No
5 Anji Fema… 2011-10-22 11 20.8 78.7 No o… No No
6 Kharanga… Male 2011-09-29 11 20.7 78.7 No o… No No
7 Anji Male 2011-05-14 11 20.9 78.5 No o… No No
8 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
9 Kharanga… Male 2010-03-22 12 20.7 78.6 No o… No No
10 Talegaon Fema… 2009-11-29 12 20.7 78.5 No o… No No
# ℹ 140 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 150 × 4
phc age ht wt
<chr> <dbl> <dbl> <dbl>
1 Anji 10 134 30.9
2 Anji 10 136. 22.5
3 Kharangana 11 137 29
4 Kharangana 16 138. 39.4
5 Anji 13 140 27
6 Anji 12 140. 30.5
7 Kharangana 11 143. 33.5
8 Talegaon 25 143. 42.6
9 Anji 12 144. 35
10 Anji 27 144 35.2
# ℹ 140 more rows
# A tibble: 150 × 4
phc age ht wt
<chr> <dbl> <dbl> <dbl>
1 Anji 25 178. 64.1
2 Talegaon 24 177 93.9
3 Talegaon 15 177 59.5
4 Anji 18 176 48.4
5 Anji 23 175. 60
6 Kharangana 30 175 55.3
7 Kharangana 22 175 57.5
8 Talegaon 20 175 53.2
9 Anji 29 175. 72
10 Talegaon 30 174. 89.2
# ℹ 140 more rows
# A tibble: 150 × 4
phc age ht wt
<chr> <dbl> <dbl> <dbl>
1 Anji 10 134 30.9
2 Anji 10 136. 22.5
3 Anji 10 NA NA
4 Kharangana 11 137 29
5 Kharangana 11 143. 33.5
6 Anji 11 144. 32.4
7 Anji 11 156. 39.5
8 Anji 12 140. 30.5
9 Anji 12 144. 35
10 Talegaon 12 145. 33.2
# ℹ 140 more rows
# A tibble: 150 × 4
# Groups: phc, sex [8]
phc wt sex ht
<chr> <dbl> <chr> <dbl>
1 Anji 30.9 Female 134
2 Anji 35.2 Female 144
3 Anji 39.3 Female 146.
4 Anji NA Female 147
5 Anji 36.9 Female 150.
6 Anji 45 Female 152.
7 Anji 65.3 Female 152.
8 Anji NA Female 152.
9 Anji 50.5 Female 152.
10 Anji 43.8 Female 152.
# ℹ 140 more rows
# A tibble: 150 × 4
phc wt sex ht
<chr> <dbl> <chr> <dbl>
1 Anji 30.9 Female 134
2 Anji 35.2 Female 144
3 Anji 39.3 Female 146.
4 Anji NA Female 147
5 Anji 36.9 Female 150.
6 Anji 45 Female 152.
7 Anji 65.3 Female 152.
8 Anji NA Female 152.
9 Anji 50.5 Female 152.
10 Anji 43.8 Female 152.
# ℹ 140 more rows
# A tibble: 62 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Graduat… No No
2 Anji Male 1992-09-07 30 20.8 78.5 Higher … No Yes
3 Anji Male 2004-04-20 18 20.8 78.7 Seconda… No No
4 Anji Male 1995-01-03 27 20.8 78.7 Graduat… No No
5 Anji Female 1994-07-27 28 20.8 78.5 Graduat… No No
6 Anji Male 1995-01-12 27 20.8 78.6 Graduat… No No
7 Anji Male 2009-06-06 13 20.9 78.5 Seconda… No No
8 Anji Male 2006-11-21 16 20.8 78.5 Seconda… No No
9 Anji Female 2006-04-07 16 20.8 78.6 No or p… No No
10 Anji Male 2007-04-25 15 20.9 78.5 Seconda… No No
# ℹ 52 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 62 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Graduat… No No
2 Anji Male 1992-09-07 30 20.8 78.5 Higher … No Yes
3 Anji Male 2004-04-20 18 20.8 78.7 Seconda… No No
4 Anji Male 1995-01-03 27 20.8 78.7 Graduat… No No
5 Anji Female 1994-07-27 28 20.8 78.5 Graduat… No No
6 Anji Male 1995-01-12 27 20.8 78.6 Graduat… No No
7 Anji Male 2009-06-06 13 20.9 78.5 Seconda… No No
8 Anji Male 2006-11-21 16 20.8 78.5 Seconda… No No
9 Anji Female 2006-04-07 16 20.8 78.6 No or p… No No
10 Anji Male 2007-04-25 15 20.9 78.5 Seconda… No No
# ℹ 52 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 88 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
2 Talegaon Male 1993-11-13 29 20.6 78.6 High… No Yes
3 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
4 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
5 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
6 Waifad Fema… 1992-07-01 30 20.7 78.5 Seco… No No
7 Talegaon Male 1997-08-15 25 20.7 78.6 High… No Yes
8 Waifad Male 2009-03-13 13 20.7 78.5 No o… No No
9 Kharanga… Fema… 2011-09-12 11 20.7 78.7 No o… No No
10 Talegaon Fema… 2004-02-28 18 20.6 78.7 High… No No
# ℹ 78 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 124 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
6 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
7 Anji Male 1995-01-03 27 20.8 78.7 Grad… No No
8 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
9 Anji Fema… 1994-07-27 28 20.8 78.5 Grad… No No
10 Talegaon Male 1997-08-15 25 20.7 78.6 High… No Yes
# ℹ 114 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 147 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
6 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
7 Anji Male 1995-01-03 27 20.8 78.7 Grad… No No
8 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
9 Waifad Fema… 1992-07-01 30 20.7 78.5 Seco… No No
10 Anji Fema… 1994-07-27 28 20.8 78.5 Grad… No No
# ℹ 137 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 1 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 2012-01-11 10 20.8 78.5 No or pri… No No
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 6 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Talegaon Male 1993-11-13 29 20.6 78.6 Highe… No Yes
2 Talegaon Female 2006-04-20 16 20.6 78.6 Secon… No No
3 Waifad Male 1993-08-13 29 20.8 78.5 Highe… No Yes
4 Anji Female 2004-02-23 18 20.8 78.7 Highe… No No
5 Anji Female 1996-06-06 26 20.8 78.5 Secon… No No
6 Anji Male 2012-01-11 10 20.8 78.5 No or… No No
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 144 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
6 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
7 Anji Male 1995-01-03 27 20.8 78.7 Grad… No No
8 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
9 Waifad Fema… 1992-07-01 30 20.7 78.5 Seco… No No
10 Anji Fema… 1994-07-27 28 20.8 78.5 Grad… No No
# ℹ 134 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 144 × 28
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
6 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
7 Anji Male 1995-01-03 27 20.8 78.7 Grad… No No
8 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
9 Waifad Fema… 1992-07-01 30 20.7 78.5 Seco… No No
10 Anji Fema… 1994-07-27 28 20.8 78.5 Grad… No No
# ℹ 134 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
[1] "1999-10-01" "1999-09-16" "1992-09-07" "2004-04-20" "1993-11-13"
[6] "2004-07-05" "2010-09-24" "1995-01-03" "1997-06-11" "1992-07-01"
[11] "1994-07-27" "1997-08-15" "2009-03-13" "2011-09-12" "1995-01-12"
[16] "2004-02-28" "2006-04-20" "1995-08-25" "2009-06-06" "2006-11-21"
[21] "2006-04-07" "2007-04-25" "1998-09-17" "1995-09-09" "2009-07-30"
[26] "1997-04-26" "1992-10-02" "2011-10-22" "2001-10-04" "1998-03-13"
[31] "1992-07-01" "2004-01-01" "2000-11-12" "2005-12-23" "1993-01-15"
[36] "2009-06-06" "2002-06-29" "2004-07-10" "1993-11-30" "1997-07-01"
[41] "2000-12-30" "2008-08-22" "2001-08-01" "1994-11-15" "1993-01-01"
[46] "1993-07-24" "1998-01-01" "2004-07-16" "1997-12-20" "2007-08-13"
[51] "2003-09-17" "1993-05-15" "2000-07-15" "1996-05-19" "2010-03-22"
[56] "1995-09-01" "1993-08-13" "2001-08-28" "2007-12-01" "2004-04-24"
[61] "2008-01-08" "2008-01-21" "1994-07-25" "2008-11-16" "2007-07-11"
[66] "2006-08-17" "2004-04-02" "1994-09-14" "1992-09-28" "1995-02-23"
[71] "2000-09-06" "2006-01-01" "2004-02-23" "2007-05-07" "2002-03-16"
[76] "1998-10-18" "1995-09-01" "1992-07-01" "1993-01-14" "2002-07-29"
[81] "2009-11-29" "2008-11-04" "2006-11-30" "2004-04-21" "2006-11-23"
[86] "1996-05-24" "1995-10-22" "2001-12-03" "2003-09-17" "1994-10-11"
[91] "1998-10-06" "2011-09-29" "2012-02-22" "1997-12-24" "1999-10-15"
[96] "2007-02-08" "2007-02-11" "2008-11-11" "1996-06-06" "2003-02-07"
[101] "1998-10-09" "2000-08-26" "2009-02-02" "2000-07-22" "2007-05-14"
[106] "2002-12-27" "1997-03-31" "2010-01-05" "1998-11-18" "1993-06-16"
[111] "2008-04-30" "2011-05-14" "1996-10-19" "2001-05-18" "1997-01-29"
[116] "2003-07-27" "2008-03-28" "1999-08-19" "2008-04-15" "2000-11-30"
[121] "2010-08-15" "2001-02-21" "2001-09-22" "1999-12-11" "2012-01-28"
[126] "1995-11-18" "2006-02-05" "2012-01-11" "2002-07-22" "1995-10-01"
[131] "2006-09-07" "2002-01-06" "2004-06-27" "2003-04-13" "2001-10-13"
[136] "2005-08-19" "1995-03-19" "1999-10-08" "1999-09-27" "2003-07-13"
[141] "2001-09-07" "2008-06-14" "1996-07-09" "1995-06-21" "2006-05-29"
[146] "2006-07-14" "2001-01-31" "2005-03-08" "2003-06-19" "2002-11-03"
Null will remove that variable being specified. Here it will be removing NewVar
NULL
# A tibble: 150 × 3
ht wt bmi
<dbl> <dbl> <dbl>
1 170 62.5 21.6
2 153. 48.2 20.6
3 169. 68 23.7
4 176 48.4 15.6
5 NA 67.8 NA
6 158. 46.6 18.8
7 152. 32.9 14.2
8 171 79 27.0
9 164. 53.3 19.7
10 150. 47.5 21.2
# ℹ 140 more rows
# A tibble: 150 × 4
ht wt ht_m bmi
<dbl> <dbl> <dbl> <dbl>
1 170 62.5 1.7 21.6
2 153. 48.2 1.53 20.6
3 169. 68 1.69 23.7
4 176 48.4 1.76 15.6
5 NA 67.8 NA NA
6 158. 46.6 1.58 18.8
7 152. 32.9 1.52 14.2
8 171 79 1.71 27.0
9 164. 53.3 1.64 19.7
10 150. 47.5 1.50 21.2
# ℹ 140 more rows
# A tibble: 150 × 30
phc sex dob age gps_lat gps_long edu curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Grad… No No
2 Kharanga… Fema… 1999-09-16 23 20.7 78.7 High… No No
3 Anji Male 1992-09-07 30 20.8 78.5 High… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Seco… No No
5 Talegaon Male 1993-11-13 29 20.6 78.6 High… No Yes
6 Talegaon Fema… 2004-07-05 18 20.6 78.6 High… No No
7 Kharanga… Fema… 2010-09-24 12 20.7 78.7 No o… No No
8 Anji Male 1995-01-03 27 20.8 78.7 Grad… No No
9 Talegaon Male 1997-06-11 25 20.6 78.6 Seco… No Yes
10 Waifad Fema… 1992-07-01 30 20.7 78.5 Seco… No No
# ℹ 140 more rows
# ℹ 21 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>,
# ht_m <dbl>, bmi <dbl>
# A tibble: 150 × 3
ht_m bmi dob
<dbl> <dbl> <date>
1 1.7 21.6 1999-10-01
2 1.53 20.6 1999-09-16
3 1.69 23.7 1992-09-07
4 1.76 15.6 2004-04-20
5 NA NA 1993-11-13
6 1.58 18.8 2004-07-05
7 1.52 14.2 2010-09-24
8 1.71 27.0 1995-01-03
9 1.64 19.7 1997-06-11
10 1.50 21.2 1992-07-01
# ℹ 140 more rows
# A tibble: 150 × 2
highSBP sbp1
<chr> <dbl>
1 Normal 120
2 Normal 106
3 Normal 116
4 Normal 97
5 Normal 109
6 Normal 99
7 Normal 110
8 Normal 105
9 Normal 101
10 Normal 117
# ℹ 140 more rows
# A tibble: 150 × 2
wt weightCat
<dbl> <chr>
1 62.5 High
2 48.2 Average
3 68 High
4 48.4 Average
5 67.8 High
6 46.6 Average
7 32.9 low
8 79 High
9 53.3 Average
10 47.5 Average
# ℹ 140 more rows
# A tibble: 6 × 28
phc sex dob age gps_lat gps_long education curSmoke curSmokeless
<chr> <chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr>
1 Anji Male 1999-10-01 23 20.8 78.6 Graduate… No No
2 Khara… Fema… 1999-09-16 23 20.7 78.7 Higher S… No No
3 Anji Male 1992-09-07 30 20.8 78.5 Higher S… No Yes
4 Anji Male 2004-04-20 18 20.8 78.7 Secondary No No
5 Taleg… Male 1993-11-13 29 20.6 78.6 Higher S… No Yes
6 Taleg… Fema… 2004-07-05 18 20.6 78.6 Higher S… No No
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 150 × 28
phc dob age sex gps_lat gps_long edu curSmoke curSmokeless
<chr> <date> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 Anji 1999-10-01 23 Male 20.8 78.6 Grad… No No
2 Kharanga… 1999-09-16 23 Fema… 20.7 78.7 High… No No
3 Anji 1992-09-07 30 Male 20.8 78.5 High… No Yes
4 Anji 2004-04-20 18 Male 20.8 78.7 Seco… No No
5 Talegaon 1993-11-13 29 Male 20.6 78.6 High… No Yes
6 Talegaon 2004-07-05 18 Fema… 20.6 78.6 High… No No
7 Kharanga… 2010-09-24 12 Fema… 20.7 78.7 No o… No No
8 Anji 1995-01-03 27 Male 20.8 78.7 Grad… No No
9 Talegaon 1997-06-11 25 Male 20.6 78.6 Seco… No Yes
10 Waifad 1992-07-01 30 Fema… 20.7 78.5 Seco… No No
# ℹ 140 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 150 × 28
phc dob age gps_lat gps_long sex edu curSmoke curSmokeless
<chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr>
1 Anji 1999-10-01 23 20.8 78.6 Male Grad… No No
2 Kharanga… 1999-09-16 23 20.7 78.7 Fema… High… No No
3 Anji 1992-09-07 30 20.8 78.5 Male High… No Yes
4 Anji 2004-04-20 18 20.8 78.7 Male Seco… No No
5 Talegaon 1993-11-13 29 20.6 78.6 Male High… No Yes
6 Talegaon 2004-07-05 18 20.6 78.6 Fema… High… No No
7 Kharanga… 2010-09-24 12 20.7 78.7 Fema… No o… No No
8 Anji 1995-01-03 27 20.8 78.7 Male Grad… No No
9 Talegaon 1997-06-11 25 20.6 78.6 Male Seco… No Yes
10 Waifad 1992-07-01 30 20.7 78.5 Fema… Seco… No No
# ℹ 140 more rows
# ℹ 19 more variables: alcEver <chr>, met_cat <chr>, TotalMetmin <dbl>,
# wt <dbl>, ht <dbl>, Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>,
# stress <chr>, depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>,
# sbp1 <dbl>, sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>
# A tibble: 150 × 28
phc dob age gps_lat gps_long edu curSmoke curSmokeless alcEver
<chr> <date> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr>
1 Anji 1999-10-01 23 20.8 78.6 Grad… No No No
2 Kharan… 1999-09-16 23 20.7 78.7 High… No No No
3 Anji 1992-09-07 30 20.8 78.5 High… No Yes No
4 Anji 2004-04-20 18 20.8 78.7 Seco… No No No
5 Talega… 1993-11-13 29 20.6 78.6 High… No Yes No
6 Talega… 2004-07-05 18 20.6 78.6 High… No No No
7 Kharan… 2010-09-24 12 20.7 78.7 No o… No No No
8 Anji 1995-01-03 27 20.8 78.7 Grad… No No No
9 Talega… 1997-06-11 25 20.6 78.6 Seco… No Yes No
10 Waifad 1992-07-01 30 20.7 78.5 Seco… No No No
# ℹ 140 more rows
# ℹ 19 more variables: met_cat <chr>, TotalMetmin <dbl>, wt <dbl>, ht <dbl>,
# Glucose <dbl>, Cholesterol <dbl>, wealth_index <chr>, stress <chr>,
# depression <chr>, anxiety <chr>, sbp <dbl>, dbp <dbl>, sbp1 <dbl>,
# sbp2 <dbl>, sbp3 <dbl>, dbp1 <dbl>, dbp2 <dbl>, dbp3 <dbl>, sex <chr>
# A tibble: 1 × 4
wt_mean wt_sd ht_mean ht_sd
<dbl> <dbl> <dbl> <dbl>
1 NA NA NA NA
# A tibble: 1 × 4
wt_mean wt_sd ht_mean ht_sd
<dbl> <dbl> <dbl> <dbl>
1 51.8 13.9 159. 10.1
# A tibble: 1 × 4
wt_mean wt_sd ht_mean ht_sd
<dbl> <dbl> <dbl> <dbl>
1 51.7 13.9 159. 10.1
# A tibble: 1 × 2
ht wt
<dbl> <dbl>
1 159. 51.8
# A tibble: 1 × 8
wt_min wt_max ht_min ht_max sbp_min sbp_max dbp_min dbp_max
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 22.5 93.9 134 178. 83 142 54 99
# A tibble: 4 × 17
# Groups: sex [2]
sex highSBP wt_1 wt_2 wt_3 wt_4 wt_5 ht_1 ht_2 ht_3 ht_4 ht_5
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Female High 51.3 12.0 50.5 36.9 73 153. 4.78 152. 145 162
2 Female Normal 46.3 10.1 43.8 30.9 73 152. 5.81 153 134 162
3 Male High 54.2 17.2 56.3 27 84.2 161. 11.0 162 140 175.
4 Male Normal 54.8 14.7 53.2 22.5 93.9 164. 10.1 165. 136. 178.
# ℹ 5 more variables: sbp_1 <dbl>, sbp_2 <dbl>, sbp_3 <dbl>, sbp_4 <dbl>,
# sbp_5 <dbl>
# A tibble: 2 × 3
sex wt ht
<chr> <dbl> <dbl>
1 Female 47.2 153.
2 Male 54.8 163.
# A tibble: 8 × 3
# Groups: phc [4]
phc sex N
<chr> <chr> <int>
1 Anji Female 18
2 Anji Male 44
3 Kharangana Female 14
4 Kharangana Male 12
5 Talegaon Female 22
6 Talegaon Male 23
7 Waifad Female 7
8 Waifad Male 10
edu No Yes Total
Graduate and above 14 0 14
Higher Secondary 49 11 60
No or primary schooling 37 5 42
Secondary 27 7 34
Total 127 23 150
# A tibble: 450 × 2
sbp_no bp
<chr> <dbl>
1 sbp1 120
2 sbp2 127
3 sbp3 117
4 sbp1 106
5 sbp2 109
6 sbp3 93
7 sbp1 116
8 sbp2 112
9 sbp3 112
10 sbp1 97
# ℹ 440 more rows
# A tibble: 300 × 4
# Groups: id [150]
id sbp_no bp diff
<int> <chr> <dbl> <dbl>
1 1 sbp1 120 NA
2 1 sbp3 117 -3
3 2 sbp1 106 NA
4 2 sbp3 93 -13
5 3 sbp1 116 NA
6 3 sbp3 112 -4
7 4 sbp1 97 NA
8 4 sbp3 115 18
9 5 sbp1 109 NA
10 5 sbp3 106 -3
# ℹ 290 more rows
# A tibble: 450 × 8
id phc age sex ht wt sbp_no bp
<int> <chr> <dbl> <chr> <dbl> <dbl> <chr> <dbl>
1 1 Anji 23 Male 170 62.5 sbp1 120
2 1 Anji 23 Male 170 62.5 sbp2 127
3 1 Anji 23 Male 170 62.5 sbp3 117
4 2 Kharangana 23 Female 153. 48.2 sbp1 106
5 2 Kharangana 23 Female 153. 48.2 sbp2 109
6 2 Kharangana 23 Female 153. 48.2 sbp3 93
7 3 Anji 30 Male 169. 68 sbp1 116
8 3 Anji 30 Male 169. 68 sbp2 112
9 3 Anji 30 Male 169. 68 sbp3 112
10 4 Anji 18 Male 176 48.4 sbp1 97
# ℹ 440 more rows
# A tibble: 450 × 8
id phc age sex ht wt sbp_no bp
<int> <chr> <dbl> <chr> <dbl> <dbl> <chr> <dbl>
1 1 Anji 23 Male 170 62.5 sbp1 120
2 1 Anji 23 Male 170 62.5 sbp2 127
3 1 Anji 23 Male 170 62.5 sbp3 117
4 2 Kharangana 23 Female 153. 48.2 sbp1 106
5 2 Kharangana 23 Female 153. 48.2 sbp2 109
6 2 Kharangana 23 Female 153. 48.2 sbp3 93
7 3 Anji 30 Male 169. 68 sbp1 116
8 3 Anji 30 Male 169. 68 sbp2 112
9 3 Anji 30 Male 169. 68 sbp3 112
10 4 Anji 18 Male 176 48.4 sbp1 97
# ℹ 440 more rows
# A tibble: 450 × 9
id.x phc age sex ht wt id.y sbp_no bp
<int> <chr> <dbl> <chr> <dbl> <dbl> <int> <chr> <dbl>
1 1 Anji 23 Male 170 62.5 1 sbp1 120
2 1 Anji 23 Male 170 62.5 1 sbp2 127
3 1 Anji 23 Male 170 62.5 1 sbp3 117
4 2 Kharangana 23 Female 153. 48.2 2 sbp1 106
5 2 Kharangana 23 Female 153. 48.2 2 sbp2 109
6 2 Kharangana 23 Female 153. 48.2 2 sbp3 93
7 3 Anji 30 Male 169. 68 3 sbp1 116
8 3 Anji 30 Male 169. 68 3 sbp2 112
9 3 Anji 30 Male 169. 68 3 sbp3 112
10 4 Anji 18 Male 176 48.4 4 sbp1 97
# ℹ 440 more rows
# A tibble: 450 × 8
id sbp_no bp phc age sex ht wt
<int> <chr> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
1 1 sbp1 120 Anji 23 Male 170 62.5
2 1 sbp2 127 Anji 23 Male 170 62.5
3 1 sbp3 117 Anji 23 Male 170 62.5
4 2 sbp1 106 Kharangana 23 Female 153. 48.2
5 2 sbp2 109 Kharangana 23 Female 153. 48.2
6 2 sbp3 93 Kharangana 23 Female 153. 48.2
7 3 sbp1 116 Anji 30 Male 169. 68
8 3 sbp2 112 Anji 30 Male 169. 68
9 3 sbp3 112 Anji 30 Male 169. 68
10 4 sbp1 97 Anji 18 Male 176 48.4
# ℹ 440 more rows
# A tibble: 342 × 8
id phc age sex ht wt sbp_no bp
<int> <chr> <dbl> <chr> <dbl> <dbl> <chr> <dbl>
1 1 Anji 23 Male 170 62.5 sbp1 120
2 1 Anji 23 Male 170 62.5 sbp2 127
3 1 Anji 23 Male 170 62.5 sbp3 117
4 2 Kharangana 23 Female 153. 48.2 sbp1 106
5 2 Kharangana 23 Female 153. 48.2 sbp2 109
6 2 Kharangana 23 Female 153. 48.2 sbp3 93
7 3 Anji 30 Male 169. 68 sbp1 116
8 3 Anji 30 Male 169. 68 sbp2 112
9 3 Anji 30 Male 169. 68 sbp3 112
10 4 Anji 18 Male 176 48.4 sbp1 97
# ℹ 332 more rows
# A tibble: 150 × 6
id phc age sex ht wt
<int> <chr> <dbl> <chr> <dbl> <dbl>
1 1 Anji 23 Male 170 62.5
2 2 Kharangana 23 Female 153. 48.2
3 3 Anji 30 Male 169. 68
4 5 Talegaon 29 Male NA 67.8
5 8 Anji 27 Male 171 79
6 9 Talegaon 25 Male 164. 53.3
7 10 Waifad 30 Female 150. 47.5
8 11 Anji 28 Female 162 59.1
9 12 Talegaon 25 Male 170 69.6
10 15 Anji 27 Male 167 60.4
# ℹ 140 more rows
# A tibble: 150 × 8
phc age sex ht wt dob sbp dbp
<chr> <dbl> <chr> <dbl> <dbl> <date> <dbl> <dbl>
1 Anji 23 Male 170 62.5 1999-10-01 120 78
2 Kharangana 23 Female 153. 48.2 1999-09-16 106 71
3 Anji 30 Male 169. 68 1992-09-07 116 67
4 Anji 18 Male 176 48.4 2004-04-20 97 62
5 Talegaon 29 Male NA 67.8 1993-11-13 109 68
6 Talegaon 18 Female 158. 46.6 2004-07-05 99 66
7 Kharangana 12 Female 152. 32.9 2010-09-24 110 68
8 Anji 27 Male 171 79 1995-01-03 105 65
9 Talegaon 25 Male 164. 53.3 1997-06-11 101 82
10 Waifad 30 Female 150. 47.5 1992-07-01 117 70
# ℹ 140 more rows